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A new turbulence modelling approach is presented. Geometrically reformulating the
averaged Navier–Stokes equations on a four-dimensional non-Riemannian manifold
without changing the physical content of the theory, additional modelling restrictions
which are absent in the usual Euclidean (3+1)-dimensional framework naturally
emerge. The modelled equations show full form invariance for all Newtonian reference
frames in that all involved quantities transform as true 4-tensors. Frame accelerations
or inertial forces of any kind are universally described by the underlying four-
dimensional geometry.

By constructing a nonlinear eddy viscosity model within the k–ε family for high
turbulent Reynolds numbers the new invariant modelling approach demonstrates
the essential advantages over current (3+1)-dimensional modelling techniques. In
particular, new invariants are gained, which allow for a universal and consistent
treatment of non-stationary effects within a turbulent flow. Furthermore, by
consistently introducing via a Lie-group symmetry analysis a new internal modelling
variable, the mean form-invariant pressure Hessian, it will be shown that already
a quadratic nonlinearity is sufficient to capture secondary flow effects, for which in
current nonlinear eddy viscosity models a higher nonlinearity is needed. In all, this
paper develops a new unified formalism which will naturally guide the way in physical
modelling whenever reasonings are based on the general concept of invariance.

1. Introduction
All turbulence models developed so far, irrespective of their statistical origin,

averaged or filtered, have one common deficiency: their governing equations only
show manifest ‘form invariance’ under space–time coordinate transformations when
restricted to Galilei transformations but not to general coordinate transformations.

The notion of form invariance is clearly to be distinguished from that of ‘frame
independence’. They are two distinct concepts which should not be confused whenever
equations are transformed. After any variable transformation the former is defined
as a property in which the structural form of an equation stays unchanged, while
the latter is defined as a property in which the transformed equation is completely
independent of all features that are being owned by the transformation. Demanding
frame independence in an equation is thus a stronger condition than demanding
form invariance, or equivalently, frame independence implies form invariance, but
not conversely. The only exception occurs within Galilei transformations, since in
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classical physics they are the only transformation set to connect inertial frames of
reference in which the two notions of form invariance and frame independence
coincide. In this discussion it is important to note that in the physics community
the concept of form invariance is frequently termed as covariance, whereas in the
engineering community the concept of frame independence is frequently termed as
objectivity.

For a more elaborate discussion on equational form invariance and frame
independence within arbitrary variable transformations, see the recent work of
Frewer (2009). In this paper, however, we are only concerned with the concept
of form invariance relative to a special subset of variable transformations, i.e.
to transformations in the ‘coordinates’ of time and space, also termed as passive
transformations (Sexl & Urbantke 2001).

The principle objective of this paper is to introduce a qualitatively new mathematical
framework in which turbulence modelling can be performed in a very general sense
and to point out the essential differences between this new framework and the
one used so far. Its development will show that it is the appropriate and even
the ultimate framework whenever reasonings in classical turbulence modelling are
based on invariance. The development itself will be carried out in the Reynolds-
averaged Navier–Stokes (RANS) context of ensemble averages; the translation to
subgrid-scale modelling in the large-eddy simulation (LES) context can then be done
straightforwardly. After all, the new mathematical framework is fully decoupled from
a certain statistical averaging technique.

The basic idea behind this framework is of geometrical nature. With the methods of
differential geometry it is possible to resolve the above-mentioned deficiency which all
turbulent models are currently sharing. The aim is to allow for modelling procedures
within equations which show manifest form invariance under ‘arbitrary’ space–time
coordinate transformations, with the only restriction that no relativistic physics is
induced, such that, after such a transformation, all dynamical quantities still continue
to evolve in the sense of Newtonian mechanics. This results in an alternative mathem-
atical representation for the theory of classical fluid mechanics, in that the geometrical
embedding is changed without modifying the physical content of the theory.

The usual three-dimensional space manifold has to be replaced by a true four-
dimensional space–time manifold, which, conceptually as well as mathematically, will
be the ‘classical’ limit of the manifold used in Einstein’s general theory of relativity
(Einstein 1916). In the following, the former manifold will be symbolized as the
(3+1)-dimensional manifold to indicate that the additional time coordinate only acts
as an evolution parameter for any physical object in that manifold, whereas the latter
manifold will be denoted as the four-dimensional manifold to indicate that the time
coordinate now behaves as an independent variable next to the spatial variables.

By construction this new four-dimensional manifold is to be classified as a
Newtonian manifold, since unlike in Einsteinian physics, space and time measurements
are uncorrelated in it. In particular the connection between inertial frames of
references is still carried by the Galilei transformations. Embedding a classical theory
into a Newtonian four-dimensional manifold is thus not restricted to fluid mechanics
only; it can be applied to the whole field of Newtonian physics, as to thermodynamics
or electrostatics. Only the full time-dependent theory of electrodynamics has to be to
excluded, since all electromagnetic phenomena are of a relativistic nature.

Now, what is the real advantage of using a different geometrical representation
for a given theory? The answer surely depends on what one intends to do. If any
equation need to be solved, analytically or numerically, a reformulation from a



Invariant turbulence modelling 39

(3+1)-dimensional to a four-dimensional setting will be of no advantage at all, but
if the equation is not closed and needs to be modelled, as a material law or as any
equation of turbulence, such reformulations automatically bring along consistent and
structured modelling arguments in the most natural way whenever they are based on
invariant principles.

The claim here is that ‘(3+1)-dimensional modelling is not equivalent to four-
dimensional modelling’ within Newtonian physics. In other words, only within a
four-dimensional space–time manifold invariant classical turbulence modelling can be
performed properly. Its clear superiority over the usual (3+1)-dimensional approach
can be fixed by the following arguments which will be discussed in detail in the
upcoming sections:

(a) The variables of space and time are fully independent.
This implies that in any closure strategy not only space but also time derivatives have
to be considered, hence allowing not only for a universal and consistent treatment of
curvature effects but also for a universal and consistent treatment of non-stationary
effects.

(b) Physical quantities as velocities or stresses always transform as tensors,
irrespective of whether they are objective (frame independent) or not.
This is important when modelling unclosed quantities as for example the Reynolds-
stress tensor with non-objective quantities.

(c) Frame accelerations or inertial forces of any kind can be interpreted as a
pure geometrical effect, described by the affine connection of the four-dimensional
manifold.
This implies that inertial and non-inertial turbulence do not need to be modelled
separately anymore. A four-dimensional turbulence model will describe non-inertial
turbulence as rotation, swirling or curved surfaces equally well or equally bad as the
corresponding inertial case.

(d) The special space–time structure of the four-dimensional manifold allows for
additional modelling constraints, which are not present in the usual (3+1)-dimensional
geometrical formulation.

The paper is organized as follows: § 2 will construct the necessary space–time
manifold for turbulence modelling as a classical limit from relativistic physics. This
limit leads to a non-Riemannian manifold having two subspaces in which a unique but
singular metrical connection can be defined and to a set of coordinate transformations
in space and time, which are compatible with this manifold. Section 3 then develops
the general algorithm for geometrically reformulating any given physical equation
on a flat four-dimensional Newtonian manifold, which will be done explicitly for the
incompressible, isothermal Navier–Stokes equations, and § 4 for the corresponding
ensemble-averaged Navier–Stokes equations. Section 5 exemplifies this new formalism
by preparing an algebraic closure for the one-point, first-moment averaged Navier–
Stokes equations. Subsection 5.1 then proposes for high turbulent Reynolds numbers
a qualitatively new nonlinear eddy viscosity model (EVM) of the k–ε family showing
a universal structure for all Newtonian reference frames. Section 6 finally discusses
this new proposition.

2. Construction of the classical Newtonian space–time manifold
In the subsequent development we consider a four-dimensional smooth manifold

in which each point can be smoothly labelled by four coordinates xα . A manifold is
characterized by its geometrical structure in that it is either endowed with an affine
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connection or additionally endowed with a metric. For a concise definition of these
geometrical concepts, see Appendix A. Our aim is to construct a physical manifold
N

(a) in which the four coordinates xα are identified as three spatial coordinates xi

and a time coordinate x0 (Greek indices will always run from 0, . . . , 3, while Latin
indices will only run from 1, . . . , 3),

(b) which possesses the minimal amount of geometrical complexity and
(c) in which physics evolves on the basis of a Newtonian description emerging as

a classical limit from Einstein’s theory of relativity.
In other words, our aim is to do Newtonian physics in a true four-dimensional
formulation with the minimal possible complexity.

To fulfil the requirement of geometrical simplicity our manifoldN should be fixed
such that it is always possible to globally choose a coordinate system in which the
affine connection vanishes, defining it as our ‘standard coordinate system’. This implies
that the manifold is flat, that it is globally without any curvature – physically the
feature of global flatness is the approximative result of allowing only for small mass
scales, i.e. allowing the gravitational force to decouple from the space–time geometry,
which certainly is a valid limit for all technical mechanics. Choosing geometrical
representations with a higher degree of complexity will not lead to any new insights
regarding turbulence modelling within technological flows.

The only difference between Newtonian mechanics and Einsteinian mechanics lies
in the single postulate of a constant speed of light for all local inertial reference
frames. The two remaining postulates, general covariance and the equivalence
between inertial and gravitational mass, are not characteristic features of Einsteinian
mechanics. Newtonian mechanics can always be mathematically reformulated such
that it conforms with these two principles, but then, Newtonian mechanics has to
generally evolve in a ‘curved’ non-Riemannian space–time manifold as was pioneered
by Cartan (1923) and Friedrichs (1928) and then further developed by various
authors such as Havas (1964), Trautman (1966) and Ehlers (1991): this non-relativistic
theory of gravitation in a curved space–time manifold, known as the Newton–Cartan
theory, reveals the close resemblance between Einstein’s and Newton’s theories in that
gravitation in both cases is identified as a geometrical feature.

It is interesting to note that not to regard the principle of general covariance as an
own exclusive postulate of general relativity, which states that all laws of physics have
to be of the same structural form in all space–time coordinate systems, was already
recognized by Kretschmann as early as 1917 (Kretschmann 1917). On this point we
will return in more detail later on.

Since Einsteinian mechanics assumes that there exists a maximum signal velocity
equal to the speed of light c in an inertial system, while Newtonian mechanics
assumes that there exist signals propagating with infinite velocity so that points in
space are causally connected even if no time goes by, the whole concept of Newtonian
mechanics on a space–time manifold will emerge from Einsteinian mechanics simply
in the classical limit c → ∞. Given that our manifold is flat the limit can be
taken in the Minkowskian manifold of special relativity with the pseudo-Euclidean
metric

ημν =

(
1 0

0 −1

)
(2.1)

if the four-dimensional coordinate system is to be chosen as a global inertial system
with Cartesian coordinates (standard coordinate system). The metric can be used to
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define an invariant infinitesimal line element which has either the dimension of length

ds2 = ημν dx̂μ dx̂ν, with x̂μ = (ct, xi) (2.2)

or the dimension of time

dτ 2 = η̂μν dxμ dxν, with η̂μν =

⎛
⎝1 0

0 − 1

c2
1

⎞
⎠ and xμ = (t, xi). (2.3)

To perform the classical limit c → ∞ we will use the latter one. Together with its
inverse metric η̂μν the relationship

η̂αλη̂λβ = δα
β , with η̂αλ =

(
1 0

0 −c21

)
, (2.4)

which equivalently can be written as

η̌αλη̂λβ = − 1

c2
δα
β , with η̌αλ =

⎛
⎝− 1

c2
0

0 1

⎞
⎠ , (2.5)

degenerates to the following relation as c→∞:

hαλgλβ = 0, with hαλ =

(
0 0

0 1

)
and gλβ =

(
1 0

0 0

)
, (2.6)

where the metrics η̌αβ and η̂αβ become independent and equal to the tensors hαβ

and gαβ respectively. In other words, in the limit c → ∞ the unique non-singular
Minkowski metric ημν splits up into two in space and time separate singular tensors,
which can be identified as a space-like metric hαβ and a time-like metric gαβ . Thus
our so constructed classical Newtonian space–time manifoldN is a non-Riemannian
manifold; its geometrical structure shows, in contrast to a Riemannian manifold, a
non-unique and singular metrical connection.

The next step is to determine the coordinate transformations that are compatible
with this manifold N. Taking the limit c → ∞ in the relation for the invariant
infinitesimal line element of (2.3)

dτ 2 = η̂αβ dxα dxβ =
c→∞

gαβ dxα dxβ = dt2 (2.7)

leads to the statement that the time coordinate x0 = t itself is an invariant. Thus
the space–time coordinate transformations compatible with the classical Newtonian
manifold N are those in which the time coordinate, up to an additive constant,
transforms as an absolute quantity

x̃α = x̃α(xβ), with x̃0 = x0. (2.8)

Since the coordinate differentials dx̃α transform as a contravariant 4-vector and since
the differential time coordinate transforms invariantly dx̃0 = dx0, one can construct
a new fundamental contravariant 4-vector

dx̃α

dx̃0
=

∂x̃α

∂xβ

dxβ

dx0

def⇐⇒ ũα =
∂x̃α

∂xβ
uβ, with uα = (1, ui); (2.9)

the velocity vector uα is to be identified as a pure time-like contravariant vector, since
its time component always transforms numerical invariantly as ũ0 = u0 = 1 and thus
can never vanish. Regarding fluid mechanics the definition (2.9) is to be seen as the
transition going from the Lagrangian to the Eulerian description in which the velocity
vector then turns into a velocity vector field uα = uα(xβ).
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From the velocity vector field one can now construct another fundamental
contravariant kinematic quantity, the acceleration vector field

dũα

dx̃0
=

∂x̃α

∂xβ

duβ

dx0
⇐⇒ ãα =

∂x̃α

∂xβ
aβ, with aα = (0, ai), (2.10)

which is to be identified as a pure space-like contravariant vector. Thus within
a true four-dimensional Newtonian manifold N velocity fields will always evolve
differently than accelerations or forces, in the sense that velocity fields uα will always
evolve as time-like vectors, while accelerations aα or forces, according to Newton’s
second law F α ∼ aα , will always evolve or act as space-like vectors. This kinematical
distinction between certain physical fields, which is definitely absent in the usual
(3+1)-dimensional formulation, will serve as a new powerful restriction property
when closing any equation of turbulence.

Now, since N is a non-Riemannian manifold it is impossible to assign to ‘every’
contravariant 4-vector a corresponding covariant 4-vector, and conversely. One rather
has to distinguish between two classes of 4-vectors, the class of space-like contravariant
vectors aα = (0, ai) and the class of time-like covariant vectors wα = (w0, 0), where in
each class one can ‘uniquely’ assign a corresponding covariant or contravariant vector
respectively. Following the notation of Havas (1964) the tensors necessary to generate
this correspondence in each class, which were derived again in more detail and were
completed in Frewer (2009), show an analogous singular space–time relation as in
(2.6) but with non-constant component entries

kαλm
λβ = 0, with kαλ =

(‖u‖2 −uj

−ui 1

)
and mλβ =

(
1 uj

ui uiuj

)
, (2.11)

where u = (u1, u2, u3) are the spatial components of the 4-velocity field uα = (1, u)
and the squared spatial norm defined as ‖u‖2 = kiju

iuj . The singular symmetric
tensor kαβ is to be interpreted as the corresponding covariant space-like metric of
hαβ in the class of space-like contravariant vectors aα , while the singular symmetric
tensor mαβ as the corresponding contravariant time-like metric of gαβ in the class
of time-like covariant vectors wα . This correspondence is not restricted to 4-vectors
only but applies to all tensors T αβ...

μν... of any rank if only each component can be
identified either as space-like or as time-like. For all other classes of tensors there is
no unambiguous correspondence between covariance and contravariance.

Eventually our non-Riemannian manifoldN allows for four different tensors, which
in well-defined subspaces ofN behave as metrical tensors to measure distances and/or
to measure time, showing the expected result that in Newtonian physics, unlike in
Einsteinian physics, space and time measurements are uncorrelated.

Up to now we characterized all metric tensors only in the standard coordinate
system (Cartesian and inertial). In arbitrary coordinate systems they are characterized
by their invariant property of a vanishing covariant derivative but only in those
subspaces in which their metrical property applies:

∇λh
ij = 0, ∇λkij = 0; ∇λg00 = 0, ∇λm

00 = 0. (2.12)

The affine connection, however, is zero in the standard coordinate system, which is
always possible to implement as a reference frame due to the flatness of the manifold
N. Then ‘relative’ to this standard frame the affine connection in arbitrary coordinate
systems is given according to its non-tensorial transformation property (A 7) simply
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as

Γ̃ ρ
μν =

∂x̃ρ

∂xσ

∂2xσ

∂x̃μ∂x̃ν
. (2.13)

3. General covariance of the Navier–Stokes equations
When Einstein formulated his general theory of relativity (Einstein 1916), he was

proud to present for the first time a theory that was generally form invariant or, as
he first called it, a theory that was generally covariant; its equations retained their
structural form under ‘arbitrary’ transformations of the space–time coordinate system.

Only a year later the mathematician Kretschmann (1917) objected: the property
of general covariance is no peculiarity of the new gravitational theory presented by
Einstein. He argued that any space–time theory can be formulated in a generally
covariant form; a so-called principle of general covariance would even be fully
devoid of any physical content. In the literature this statement became famous as
Kretschmann’s objection. For further discussions on it, Einstein’s response and the
still-active debate that followed, see the papers of Norton (1993, 1995) and Dieks
(2006).

Kretschmann’s objection that general covariance is physically vacuous, in that
it does not limit or restrict the range of acceptable theories, is a rather ‘non-trivial’
objection when it comes down to constructing and formulating ‘new’ physical theories,
as it was at that time in 1917 for the theory of general relativity. However, for already-
existing physical theories his objection is more or less obvious from a pure theoretical
point of view, since at the end, only a new mathematical representation is given for the
theory. But this does not mean that it is always an easy task to put any given theory
into a generally covariant form; sometimes it’s a challenge to the mathematician’s
ingenuity.

Since our aim is only to achieve general covariance of Newtonian mechanics in a
flat manifold N, the procedure is simple and defined as follows.

(i) Write the Newtonian equations in the inertial (3+1)-dimensional Cartesian form.
(ii) Rewrite them into the corresponding four-dimensional form (standard

coordinate system) using the geometrical structure of the Newtonian space–time
manifold N.

(iii) Make the transition from inertial Cartesian to arbitrary space–time coordinates
by replacing the partial derivative with the covariant derivative ∂α → ∇α .
For the Navier–Stokes equations of an incompressible, isothermal fluid the programme
in each step reads

∂iu
i = 0,

∂tu
i + uj∂ju

i = −δij∂jp + νδjk∂j ∂ku
i,

}
(3.1)

↓
∂αu

α = 0,

uβ∂βu
α = −hαβ∂βp + νhβγ ∂β∂γ uα,

}
(3.2)

↓
∇αu

α = 0,

uβ∇βu
α = −hαβ∇βp + νhβγ∇β∇γ uα.

}
(3.3)

By construction, the Navier–Stokes equations in the last formulation will stay form
invariant under all space–time coordinate transformations which are compatible with
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the underlying four-dimensional Newtonian manifoldN. In other words, if we change
the frame of reference according to (2.8) the Navier–Stokes equations in form (3.3)
will transform form invariantly:

∇̃αũ
α = 0,

ũβ∇̃βũ
α = −h̃αβ∇̃βp̃ + νh̃βγ ∇̃β∇̃γ ũα.

}
(3.4)

As was already discussed briefly in § 1, the property of form invariance does not
imply the property of frame independence. Irrespective of being in a form-invariant
representation, system (3.3) will in general show frame dependence emerging partly
from the space-like metric h̃αβ (Frewer 2009) and partly from the affine connection in
the covariant differentiation

∇̃αũ
β = ∂̃αũ

β + ũλΓ̃
β

αλ. (3.5)

Furthermore, it is clear that the above reformulation did not change the physical
content of the classical Navier–Stokes equations. System (3.3) will lead to the very
same physical predictions as the original system (3.1) would do. In the reasoning of
modelling turbulent flows, however, the two systems will lead to different results, as
we now want to demonstrate in the remaining sections.

4. General covariance of the averaged Navier–Stokes equations
To show the essential results in the covariant development of the averaged Navier–

Stokes equations it is fully sufficient to explicitly demonstrate it only relative to
one-point statistics of ensemble averages up to the first moment. The development
for higher statistical moments, or for N -point statistics, or even for a different choice
in the statistical method itself can be done straightforwardly without any theoretical
complications.

Using the Reynolds decomposition to separate the average and the fluctuating parts
in the velocity and pressure fields with vanishing average fluctuations

uα = 〈uα〉+ u′α, p = 〈p〉+ p′, with 〈u′α〉 = 0, 〈p′〉 = 0, (4.1)

by defining the average as an ensemble average

〈uα〉 := 1

N

N∑
r=1

(uα)(r), 〈p〉 := 1

N

N∑
r=1

p(r), (4.2)

where N � 1 is the number of realizations, it implies that

〈uα〉 = (1, 〈ui〉), u′α = (0, u′ i), (4.3)

the average 4-velocity 〈uα〉, like the instantaneous velocity uα , is a pure time-like
vector which can never turn space-like and that the fluctuating 4-velocity u′α is a pure
space-like vector which can never turn time-like. The four-dimensional formulation
thus shows that the average and fluctuating 4-velocities evolve differently within the
Newtonian space–time manifold N. The behaviour of the fluctuating velocity is not
that of a velocity but rather that of an acceleration or that of a force, an information
which is completely absent in the usual (3+1)-dimensional formulation.

Inserting decomposition (4.1) into the form-invariant Navier–Stokes equations (3.3)
and then averaging these equations will straightforwardly lead to the general manifest
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form-invariant averaged Navier–Stokes equations

∇α〈uα〉 = 0,

〈uβ〉∇β〈uα〉 = −hαβ∇β〈p〉+ νhβγ∇β∇γ 〈uα〉 − ∇βτ
αβ, (4.4)

where the Reynolds-stress tensor ταβ = 〈u′αu′β〉 is a pure ‘space-like’ 4-tensor, which
has to be respected during modelling. The relevant averaged subspaces, in which a
unique but singular metrical connection can be defined, provide, when written in the
standard coordinate system (Cartesian and inertial), the two space-like metrics

hαβ =

(
0 0

0 1

)
, k

〈u〉
αβ =

(‖〈u〉‖2 −〈uj 〉
−〈ui〉 1

)
(4.5)

and the two time-like metrics

gαβ =

(
1 0

0 0

)
, m

αβ

〈u〉 =

(
1 〈uj 〉
〈ui〉 〈ui〉〈uj 〉

)
. (4.6)

The averaged and fluctuating 4-velocities can then be uniquely represented as

〈uα〉 = m
αβ

〈u〉〈uβ〉, u′α = hαβu′β, (4.7)

together with their inverse relations

〈uα〉 = gαβ〈uβ〉, u′α = k
〈u〉
αβ u′β, (4.8)

which define the covariant averaged and the covariant fluctuating 4-velocity
respectively.

5. Invariant modelling of a nonlinear EVM
To exemplify the main advantages of modelling on a true four-dimensional manifold

it is already sufficient to consider only the simplest closure strategy; i.e. in the following
we will only focus on a local algebraic closure of the Reynolds-stress tensor. Within
this limitation it is reasonable to consider the construction of a complete model.
For an easy ad hoc comparison with already existing nonlinear turbulent EVMs it is
worthwhile to construct a two-equation model which will be part of the k–ε family.

The aim is to close the Reynolds-stress tensor algebraically,

ταβ = F αβ(V), (5.1)

in whichV represents the general closure set, here being defined as a local functional
argument set of averaged variables. Before we begin to fix this set, it is advisable to
first list the modelling restrictions for the unknown functional F αβ:

(i) it is a contravariant tensor of rank 2,
(ii) it is a pure space-like tensor,
(iii) it is a symmetric tensor,
(iv) it carries the dimension of velocity squared.

Hence, just by geometrically reformulating the averaged Navier–Stokes equations on
a four-dimensional manifold two more restrictions, namely (i) and (ii), are gained
than in the usual (3+1)-dimensional formulation, where only the properties of
symmetry (iii) and dimensional consistency (iv) serve as restrictions. The distinction
between space-like and time-like as well as between contravariant and covariant
tensor components in ‘all’ possible reference frames is completely absent in the
(3+1)-dimensional formulation. In a non-Riemannian four-dimensional formulation,
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however, such a distinction is already of relevance in the standard reference frame,
as it represents an immediate consequence of the underlying geometrical structure.

If the motivation in closing the averaged Navier–Stokes equations (4.4) is only to
make use of the sole information these equations can supply, the most basic ansatz
for a local algebraic closure is to close the Reynolds-stress tensor (5.1) with those
variables which are being solved for, together with their first gradients:

V = {〈P σ 〉, 〈uσ 〉;∇λ〈P σ 〉,∇λ〈uσ 〉}, (5.2)

where 〈P α〉 := hαβ∇β〈p〉 is the mean space-like pressure gradient. Of course this ansatz
is not restricted in only taking the first gradients along; it can include gradients of
any order – there is no upper limit for that. The only reason to truncate the functional
set V at first order is to keep the degree of complexity to a necessary minimum.

Compared to current nonlinear EVMs developed by Speziale (1987), Gatski &
Speziale (1993), Shih, Zhu & Lumley (1995), Craft, Launder & Suga (1996), Apsley
& Leschziner (1998) and Wallin & Johansson (2000), which all can be traced back
to the general series expansion of the Reynolds-stress tensor in terms of strain and
vorticity tensors as first given by Pope (1975), the key differences in the structure and
in the choice of the above closure set (5.2) are as follows:

(a) all functional variables in V transform as four-dimensional tensors under
‘arbitrary’ coordinate transformations with absolute time;

(b) on a four-dimensional manifold not only space derivatives but also time
derivatives are automatically included;

(c) the mean pressure gradient is taken along; and
(d) not only the mean four-dimensional velocity gradient, which can be split up

into a symmetric mean strain and an antisymmetric mean vorticity tensor, but also
the 4-velocity itself are part of the closure set V.

As will be discussed in more detail later on, such a modelling approach will induce
not only the correct and consistent treatment of curvature effects in a turbulent flow
but also the correct and consistent treatment of non-local and memory effects in that
flow. It is clear that only the first two statements are a consequence of four-dimensional
modelling, while the last two statements have to be seen as a new algebraic modelling
proposal which could have also been carried out in (3+1)-dimensional modelling –
but here with the decisive advantage that it is carried out systematically within the
range of universal form invariance.

The necessity of including the mean pressure gradient as an additional independent
closure variable can only be justified upon looking at flow configurations in which
current nonlinear EVMs still have serious difficulty in resolving a turbulent state
properly (Speziale 1991; Pope 2000; Leschziner 2001). Despite their success as to
returning the correct level of anisotropy or capturing the influence of curvature
in any turbulent flow, there are still some basic flow configurations for which the
modelling hypothesis of a pure relationship between stress and mean velocity gradient
completely fails, irrespective of the degree of nonlinearity. To this class certainly belong
all flows in which turbulence is subjected to a mean deformation on a finite length
or time scale, either by a sudden change in the bounding geometry or by a change in
an acting body force. For example, regarding the components of the Reynolds-stress
tensor all current nonlinear EVMs cannot properly account for the relaxation effects
that will emerge after deformation; only the models of the next level of closure, the
second-moment closure models, show the ability to describe these effects.

Even worse, ‘after’ the deformation of an initially homogeneous turbulent
flow, known as the return-to-isotropy problem, any stress model that exhibits a
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sole dependence on the mean velocity gradient will inevitably predict that the
Reynolds-stress anisotropies are zero due to the non-existence of a mean velocity
in that domain. This prediction of vanishing anisotropies is in severe conflict with
the data of experiments and simulations (Choi & Lumley 2001), which show instead
that the anisotropies generated ‘during’ deformation even show a long persistence
‘after’ deformation with a slow decay rate relative to a turbulent time scale. For
flow configurations with a rapidly changing bounding geometry the mean pressure
gradient would be an optimal candidate to account for non-local effects, which surely
are necessary to understand the dynamics behind such flows – in the case of the
return-to-isotropy problem, however, such that beyond the deformation domain no
averaged velocity profile is induced.

A more singular problem which current nonlinear EVMs face is that all wall-
bounded flows which show a symmetric averaged velocity profile, as in ducts or
channels, have an extremal centre position which corresponds to the annulation of
the mean velocity gradient, which again implies vanishing Reynolds-stress anisotropies
at that position. But this is certainly not the case; the Reynolds-stress anisotropies
show clear finite values at that position, which corresponds to a ‘local’ non-validity
of the current nonlinear viscosity modelling hypothesis in that the Reynolds-stress
tensor should globally depend on velocity gradients only. For this singular problem it
is not out of the question that pressure can play again the role of a deus ex machina
variable. As is well known from turbulent channel flow, the averaged pressure shows
a simple linear profile in the direction of the mean flow but a rather complex profile
in the wall-normal direction being proportional to the wall-normal Reynolds-stress
component (Pope 2000).

After all, there is no deeper reason why the Reynolds-stress tensor should not
depend on the mean pressure gradient, as long as this dependence is not in conflict
with any physical constraints — on this point we will return later on.

As is well known, the averaged Navier–Stokes equations (4.4) with variable choice
(5.2) as a closed system are incapable of describing any turbulent flow; it surely needs
information from outside to fix certain scales of turbulence. Since the present focus
is only on incompressible, isothermal flows the minimum requirement for a complete
description is to fix at least two scales, a turbulent length scale lT and a turbulent
time scale tT , where each scale need to be determined dynamically for every space–
time point. Using the Kolmogorov phenomenology of turbulent flows (Kolmogorov
1941a ,b; Davidson 2004), the two scales lT and tT can be equivalently replace by
the two functionally independent quantities of a turbulent kinetic energy K and its
dissipation rate ε.

On a four-dimensional manifold the turbulent kinetic energy is given as the invariant
K = 〈u′αu′α〉/2, while the dissipation rate of turbulent kinetic energy has the invariant
structure

ε = 2νk
〈u〉
αβ k〈u〉μν 〈sαμsνβ〉, with sαβ = 1

2
(hαλ∇λu

′β + hβλ∇λu
′α) (5.3)

as the contravariant fluctuating 4-strain-rate tensor. Usually the true dissipation rate
of turbulent kinetic energy ε is not taken, but rather the pseudo-dissipation rate (Pope
2000)

E = νhμλ〈∇μu′
α∇λu

′
α〉, (5.4)

which is related to the true dissipation rate by E = ε − ν∇α∇βτ
αβ .
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Hence, the complete closure variable list for a four-dimensional invariant two-
equation turbulence model up to gradients of first order is given as

V = {K,E, 〈P σ 〉, 〈uσ 〉;∇λK,∇λE,∇λ〈P σ 〉,∇λ〈uσ 〉}, (5.5)

where for consistency also the first-order gradients of K and E have to be included.
The invariant turbulent kinetic energyK evolves according to the transport equation

〈uα〉∇αK = −k
〈u〉
βλ τ λα∇α〈uβ〉 − E+ ∇λDλ

(K)
+ νhαβ∇α∇βK, (5.6)

and its invariant (pseudo-)dissipation rate E according to

〈uα〉∇αE = Pα
(1) β∇α〈uβ〉+Pαβ

(2) λ∇α∇β〈uλ〉+P
(3)

− Υ + ∇λDλ
(E)

+ νhαβ∇α∇βE. (5.7)

These complete form-invariant transport equations can be easily derived from the
usual (3+1)-dimensional equations for K and E just by making use of the simple
algorithm as shown for the Navier–Stokes equations (3.1)–(3.3).

Next to the Reynolds-stress tensor ταβ and its modelling restrictions mentioned
in the beginning of this section the following unclosed four-dimensional invariant
turbulent flow quantities have to be modelled:

(a) Pα
(1) β = −2ν(hλσ 〈∇λu

′
β∇σu′α〉 + hλα〈∇λu

′σ∇βu
′
σ 〉), as a dissipation production

tensor of mixed rank (1,1) with the properties that
(i) the contravariant component α is space-like, which allows for the unique
representation Pα

(1) β = hαλP
(1)λβ;

(ii) the covariant component β is time-like but contributes in the E-equation only
for β �= 0, since ∇α〈u0〉 = 0 in all Newtonian reference frames;
(iii) it carries the space-like dimension l2

T
/t3

T
= E.

(b) Pαβ

(2) λ = −2νhασ 〈u′β∇σu′λ〉, as a dissipation production tensor of mixed rank (2,1)
with the properties that

(i) the contravariant components α and β are space-like, which allows for the
unique representation Pαβ

(2) λ = hαρhβσP
(2)ρσλ;

(ii) the covariant component λ is time-like but contributes in the E-equation only
for λ �= 0, since ∇α∇β〈u0〉 = 0 in all Newtonian reference frames;
(iii) it carries the space-like dimension l3

T
/t3

T
=K3/2.

(c) P
(3)

= −2νhαβ〈∇αu
′λ∇βu

′σ∇σu′λ〉, as a dissipation production scalar which carries

the dimension l2
T
/t4

T
= E2/K.

(d) Υ = 2ν2hαβhρσ 〈∇α∇ρu
′λ∇β∇σu′λ〉, as a dissipation destruction scalar carrying

the dimension l2
T
/t4

T
= E2/K.

(e) Dλ
(E)

= −νhασ (〈u′λ∇αu
′ρ∇σu′ρ〉 + 2〈∇αu

′λ∇σp′〉), as a dissipation diffusion tensor

of rank (1,0), which is space-like and with dimension l3
T
/t4

T
=K1/2E.

(f) Dλ
(K)

= −〈u′αu′αu′λ〉/2− 〈p′u′λ〉, as a turbulent kinetic energy diffusion tensor of

rank (1,0), which is space-like and carries the dimension l3
T
/t3

T
= K3/2.

Due to its numerous unclosed terms, the E-equation certainly causes the most
difficulty in modelling turbulent flows, especially wall-bounded flows. To capture the
complete domain of such flows it is necessary to split up each unclosed term in the
E-equation into at least two contributions, one showing an ‘explicit’ dependence on
the molecular viscosity parameter ν and the other an ‘implicit’ dependence which
will be carried by the dissipation rate E as a dimensional scale. Based on the local
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turbulent Reynolds number

ReT =
K2

νE =:
νT

ν
, (5.8)

which for any given ν or, equivalently, for any given global Reynolds number Re
is always small (low) in the near-wall region and large (high) around the centre
region of the flow, each unclosed tensor Xαβ...

ρσ ... in the E-equation will thus be split up

into a low-Reynolds-number part X̌αβ...
ρσ ... and into a high-Reynolds-number part X̂αβ...

ρσ ...

accordingly:

Pα
(1) β = νP̌α

(1) β + P̂α
(1) β, with the local dimensional structure

[
Pα

(1) β

]
= ν
E2

K2
+ E,

Pαβ

(2) λ = νP̌αβ

(2) λ + P̂αβ

(2) λ , with
[
Pαβ

(2) λ

]
= ν

E
K1/2

+K3/2,

P
(3)

= νP̌
(3)

+ P̂
(3)
, with [P

(3)
] = ν

E3

K3
+
E2

K ,

Υ = ν2Υ̌ + Υ̂ , with [Υ ] = ν2 E4

K5
+
E2

K ,

Dλ
(E)

= νĎλ
(E)

+ D̂λ
(E)

, with
[
Dλ

(E)

]
= ν

E2

K3/2
+K1/2E.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5.9)

The low-ReT and high-ReT terms are modelled in those turbulent flow regions in
which they become relevant. Close to the wall, where K ∼ 0 and E ∼ constant,
simple dominant balance arguments in the dimensional analysis given above reveal
that in this limit the full E-equation (5.7) will turn into a low-ReT transport equation

〈uα〉∇αE = νP̌α
(1) β∇α〈uβ〉+ νP̌αβ

(2) λ∇α∇β〈uλ〉+ νP̌
(3)

− ν2Υ̌ + ν∇λĎλ
(E)

+ νhαβ∇α∇βE. (5.10)

The high-ReT terms are modelled towards the opposite extreme within a double limit:
(i) far away from any solid walls, where K is non-vanishing and where gradients of
any averaged flow quantities are rather weak, and (ii) in turbulent flows with a high
global Reynolds number Re or equivalently in the limit of ν → 0, whereK� 1 and
where in fully developed turbulence E nearly attains a finite constant value. In this
sense the full E-equation (5.7) will turn into a high-ReT transport equation

〈uα〉∇αE = P̂α
(1) β∇α〈uβ〉+ P̂αβ

(2) λ∇α∇β〈uλ〉 − Ψ̂ + ∇λD̂λ
(E)

, (5.11)

where the scalar production and destruction rate have been merged into one invariant

rate Ψ̂ = −P̂
(3)

+ Υ̂ , since it is impossible to distinguish between these two quantities
during any invariant modelling process.

The aim of this paper is really to demonstrate the mechanisms of modelling
turbulence on a four-dimensional manifold, to give the spirit of it. In this sense it is
fully sufficient not to demonstrate it within the complete domain of a turbulent flow
but only within the range of the high-ReT transport equation (5.11).

5.1. Construction of a high-ReT turbulence model

Dropping the irrelevant molecular diffusion terms in the averaged momentum and
turbulent kinetic energy transport equations in the limit of high ReT , the full set of
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coupled model equations for the averaged velocity and pressure field reads

∇α〈uα〉 = 0,

〈uβ〉∇β〈uα〉 = −hαβ∇β〈p〉 − ∇βτ
αβ,

〈uα〉∇αK = −k
〈u〉
βλ τ λα∇α〈uβ〉 − E+ ∇λDλ

(K)
,

〈uα〉∇αE = P̂α
(1) β∇α〈uβ〉+ P̂αβ

(2) λ∇α∇β〈uλ〉 − Ψ̂ + ∇λD̂λ
(E)

.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.12)

All six unclosed tensor functions

ταβ, Dλ
(K)

, D̂λ
(E)

, P̂α
(1) β, P̂

αβ

(2) λ , Ψ̂ (5.13)

will be modelled on the basis of the same functional dependency structureV as given
in (5.5). However, a prior Lie-group analysis (Olver 1993; Ibragimov 1994; Bluman
& Kumei 1996; Cantwell 2002), which is beyond the scope of this paper, clearly
reveals that in order to model consistently along ‘all’ Lie-point symmetries of the
Navier–Stokes equation, the set V has to be fixed as

V =

{
1

K1/2
〈uσ 〉; K

1/2

E ∇λK,
K3/2

E2
∇λE,

K2

E2
∇λ〈P σ 〉, KE ∇λ〈uσ 〉

}
, (5.14)

in which the pressure gradient of first order 〈P σ 〉 has to be excluded and in which
only variables with non-dimensionalized space-like components are to be used. It
can be briefly explained as follows: in the standard coordinate system (Cartesian
and inertial) the complete infinite-dimensional Lie-point algebra of the ‘full’ Navier–
Stokes equations LNS , that means, irrespective of whether the flow field is turbulent
or laminar, is spanned by the following seven linear independent generators:

T = ∂t , S = 2t∂t + xi∂i − ui∂ui − 2p∂p,

Rij = xi∂j − xj∂i + ui∂uj − uj∂ui , i �= j,

G( f (t)) = f i(t)∂i + f ′
i(t)∂ui − f ′′

i(t)xi∂p, P (g(t)) = g(t)∂p,

⎫⎪⎬
⎪⎭ (5.15)

where f and g are arbitrary time-dependent differentiable functions. For the
corresponding RANS system of equations (5.12) the Lie-point symmetries equivalently
translate to (Ünal 1997; Oberlack 2001)

T = ∂t , S = 2t∂t + xi∂i − 〈ui〉∂〈ui〉 − 2〈p〉∂〈p〉 − 2K∂K − 4E∂E,

Rij = xi∂j − xj∂i + 〈ui〉∂〈uj 〉 − 〈uj 〉∂〈ui 〉, i �= j

G( f (t)) = f i(t)∂i + f ′
i(t)∂〈ui 〉 − f ′′

i(t)xi∂〈p〉, P (g(t)) = g(t)∂〈p〉,

⎫⎪⎬
⎪⎭ (5.16)

where each symmetry transformation then has to be seen as a modelling restriction
for the unclosed system (5.12). For obtaining the symmetry generators in arbitrary
reference frames they, of course, have to be transformed accordingly: however, such
a coordinate transformation will not change the number or the physical properties
of the symmetries; only the mathematical representation is changed which in general
can turn arbitrarily complex.

Since the autonomous property of the Navier–Stokes equations is not changed
during modelling, the time translation symmetry generated by T will always be
trivially fulfilled. The same holds true for the fixed rotation symmetry generated by Rij ,
since as being itself a coordinate transformation connecting inertial frames, modelling
occurs throughout in a tensorial formulation. The scaling symmetry generated by
S can be reduced to a scaling symmetry of the physical dimensions of length and
time. Thus even if the modelling procedure respects dimensional consistency, then
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also this scaling symmetry will always be automatically fulfilled. On the other hand,
the pure time-dependent pressure translation symmetry generated by P is in general
only fulfilled if the modelling procedure allows for pressure variables in which at least
one spatial derivative is involved. Certainly, this will always be the case if the mean
space-like pressure gradient 〈P α〉, or one of its higher order gradients, is used as a
modelling variable. However, the extended Galilei symmetry generated by G , which
allows for arbitrary linear frame accelerations if only the pressure field adjusts the
induced inertial force accordingly, demands in general the exclusion of the first-order
mean pressure gradient 〈P α〉 as a modelling variable, since its pressure correction
term emerging from such a transformation cannot always be compensated by the
remaining transformed modelling variables chosen herein.

Altogether, this briefly explains result (5.14). However, it must be clear that this
result, although being expressed in a four-dimensional covariant form, is not a
consequence due to the four-dimensional formulation itself. It also could have been
gained within the usual (3+1)-dimensional formulation. The reason is that since
the physical content of the Navier–Stokes equations remains unchanged under the
transition given here of going from a Euclidean (3+1)-dimensional towards a flat
non-Riemannian four-dimensional geometry, a Lie-group symmetry analysis will
inevitably lead to the very same results for each framework. In other words, from the
perspective of a Lie-group symmetry analysis the only difference between the (3+1)-
dimensional and the four-dimensional Navier–Stokes equations is that the latter
equations are already inherently carrying all reference frame representations. But, as
already said, a Lie-point symmetry will not change its physical and/or mathematical
interpretations under ‘any’ coordinate transformation. A coordinate transformation
will only change the mathematical representation of the symmetry but not its meaning
and its consequences which it can further imply (Ovsiannikov 1982; Olver 1993).

Now, when orientating the upcoming modelling procedure towards current
nonlinear EVMs, which in general provide a broad range of applicability, it is
reasonable to choose for each unclosed tensor function the following dependencies:

ταβ = ταβ(Vτ ), with Vτ =
{

1
K1/2 〈uσ 〉; K2

E2 ∇λ〈P σ 〉, KE ∇λ〈uσ 〉
}
⊂ V,

Dλ
(K)

= Dλ
(K)

(VDK), with VDK =Vτ ∪
{
K1/2

E ∇λK
}
⊂ V,

D̂λ
(E)

= D̂λ
(E)

(VD̂E), with VD̂E =Vτ ∪
{
K3/2

E2 ∇λE
}
⊂ V,

P̂α
(1) β = P̂α

(1) β(VP̂1
), with VP̂1

=Vτ ,

P̂αβ

(2) λ = P̂αβ

(2) λ (VP̂2
), with VP̂2

=Vτ ,

Ψ̂ = Ψ̂ (VΨ̂ ), with VΨ̂ =V.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.17)

For example the dependence choice for the two production terms of the E-equation is
orientated along the production term in theK-equation (5.12) which is proportional
to the Reynolds-stress tensor, whereas the dependence choice for the two diffusion
terms will explicitly account for a diffusion source term in each of the two turbulent-
scale transport equations. On the other hand, the dependency range of the unclosed
scalar term is not restricted; it is chosen to be modelled via the full dependence (5.14).

The algebraic theory of tensor invariants, which was prepared for classical
continuum mechanics by Spencer & Rivlin (1958), shows that the most general
polynomial expansion of any tensor function Fαβ...

ρσ ...(X) naturally truncates at a
fixed order NF. In other words, the number of independent invariants and linearly



52 M. Frewer

independent tensors that may be formed from the elements of any given tensor set
X is finite. This means that the general expansion of Fαβ...

ρσ ...(X) can be expressed as a
finite polynomial in which the expansion coefficients are functions of a finite number
of invariants based on the elements of X.

In continuum mechanics the assumption of material frame indifference can be
frequently made for certain materials as for solids or ordinary dense fluids in order
to reduce possible constitutive equations. However, as indicated already by Lumley
(1970), despite some analogies between the dynamics of a turbulent flow and the
behaviour of a nonlinear viscoelastic fluid, an assumption as that of material frame
indifference is unfounded. Various experiments and direct numerical simulations
clearly support this statement in that unclosed terms of turbulence, as the Reynolds-
stress tensor, always show strong frame dependency. Hence, a principle of material
frame indifference may not be used for turbulence modelling, not even in an
approximative sense – for a more elaborate discussion on this topic, see Frewer
(2009).

The first lowest order to model explicit frame dependence in the unclosed tensor
functions (5.17) is to truncate the functional expansions at quadratic order. However,
when demanding an overall quadratic nonlinearity in the transport equations (5.12),
as we will do herein, the two dissipation production tensors have to be truncated
already at linear order, while the remaining four unclosed terms have to be truncated
at quadratic order.

The invariants belonging to the tensor set V (5.14) up to quadratic order are given
by the following 12 dimensionless expressions:

I1 = hαβk
〈u〉
αβ , I2 =

K2

E2
∇α〈P α〉, I3 =

1

E〈u
α〉∇αK, I4 =

K
E2
〈uα〉∇αE,

I5 =
K
E2

hαβ∇αK · ∇βK, I6 =
K2

E3
hαβ∇αK · ∇βE, I7 =

K3

E4
hαβ∇αE · ∇βE,

I8 =
K4

E4
∇α〈P α〉 · ∇β〈P β〉, I9 =

K4

E4
∇α〈P β〉 · ∇β〈P α〉, I10 =

K3

E3
∇α〈P β〉 · ∇β〈uα〉,

I11 =
K2

E2
∇α〈uβ〉 · ∇β〈uα〉, I12 =

K2

E2
hλσ k

〈u〉
αβ ∇λ〈uα〉 · ∇σ 〈uβ〉.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.18)

It is worth noting that only the invariants I3 and I4 carry a time derivative in all
Newtonian reference frames; all others are pure space-like invariants. In particular,
these two invariants represent the kinematic left-hand sides of theK- and E-transport
equations respectively – mathematically we are thus confronted with a self-consisting
modelling approach which can account for turbulent memory effects. On the contrary,
I1 is a numerical invariant which always has the constant value I1 = 3 in all
Newtonian reference frames.

Respecting the modelling constraints for the Reynolds-stress tensor ταβ given in
the beginning of § 5, as well as the consistency condition that its contraction has to

be twice the turbulent kinetic energy k
〈u〉
αβ τ αβ = 2K, a quadratic expansion of ταβ(Vτ )

(5.17) will then be of the form

ταβ = 2
3
hαβK+ aαβ, with aαβ =K

8∑
i=1

Λ(i)a
αβ

(i) , (5.19)

where aαβ is the space-like anisotropy tensor satisfying k
〈u〉
αβ aαβ = 0. The expansion

coefficients will be chosen to be functions of the full invariant set V in order to
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achieve the maximum range of applicability when restricting the model physically:
Λ(i) = Λ(i)(I(j )), with 1 � j � 12. The anisotropic dimensionless expansion terms
are

a
αβ

(1) =
K2

E2

(
hαρhβσ − 1

3
hαβhρσ

)
∇ρ∇σ 〈p〉, a

αβ

(2) =
K
E

(
hαλ∇λ〈uβ〉+ hβλ∇λ〈uα〉

)
,

a
αβ

(3) =
K4

E4
hκλ

(
hαρhβσ − 1

3
hαβhρσ

)
∇ρ∇σ 〈p〉 · ∇κ∇λ〈p〉,

a
αβ

(4) =
K4

E4
hσλ

(
hαρhβκ − 1

3
hαβhρκ

)
∇ρ∇σ 〈p〉 · ∇κ∇λ〈p〉,

a
αβ

(5) =
K3

E3

(
hαρhβσ − 2

3
hαβhρσ + hβρhασ

)
∇ρ∇λ〈p〉 · ∇σ 〈uλ〉,

a
αβ

(6) =
K2

E2

(
hαρ∇ρ〈uσ 〉 · ∇σ 〈uβ〉 − 2

3
hαβ∇ρ〈uσ 〉 · ∇σ 〈uρ〉+ hβρ∇ρ〈uσ 〉 · ∇σ 〈uα〉

)
,

a
αβ

(7) =
K2

E2
hρσ

(
∇ρ〈uα〉 · ∇σ 〈uβ〉 − 1

3
hαβk

〈u〉
κλ ∇ρ〈uκ〉 · ∇σ 〈uλ〉

)
,

a
αβ

(8) =
K2

E2
k
〈u〉
κλ

(
hαρhβσ − 1

3
hαβhρσ

)
∇ρ〈uκ〉 · ∇σ 〈uλ〉,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5.20)

where the notation for the mean pressure gradient has been written out, 〈P α〉 =
hαβ∇β〈p〉, to explicitly show the required index symmetry in the expansion. When
looking carefully at the above expansion one observes that the mean velocity field
variable 〈uα〉 is excluded, although it is part of the dependency set Vτ (5.17).
The expansion of the Reynolds-stress tensor ταβ only includes its gradient ∇α〈uβ〉.
However, this would no longer be the case if, for example, the dependency set
Vτ is extended to the full set V (5.14) followed by a polynomial expansion in
those variables up to a cubic nonlinearity. Then additional anisotropic terms like
a

αβ

(1)I3 ∼ a
αβ

(1)〈uα〉∇αK, or like a
αβ

(2)I4 ∼ a
αβ

(2)〈uα〉∇αE, will enter the Reynolds-stress
tensor. In any case, if the velocity field enters it can only enter in a contracted form,
since its ‘time-like’ behaviour will always naturally exclude any uncontracted forms
in the ‘space-like’ Reynolds-stress tensor.

Since expansion (5.20) only shows a quadratic nonlinearity, one can claim, following
the results of Craft et al. (1996) and Speziale, Younis & Berger (2000), that the above-
proposed algebraic model for the Reynolds-stress tensor will be incapable over a range
of flows to correctly describe any effect of streamline curvature or, more specifically,
will fail to predict the emergence and the subsequent persistence of a swirling flow
component in fully developed axially rotating pipe flows, since it needs at least a
cubic nonlinearity to capture all these effects. The combined approach of modelling
on a four-dimensional manifold and to include the mean pressure as a new internal
modelling variable will most naturally allow to capture these effects already on the
level of a quadratic nonlinearity in the Reynolds-stress tensor, if proposed as in
(5.20). It is essentially the anisotropy term a

αβ

(5) , the coupling between mean pressure
and mean velocity, which is responsible for this. For the axially rotating pipe it is
demonstrated in Appendix B that this term, then proportional to the radial pressure
gradient, will give rise to a persisting swirl velocity. This definitely sheds new light
on nonlinear EVMs as to identify the mechanisms responsible for generating such
secondary flows, since currently (Speziale et al. 2000) it is claimed that only the mean
axial velocity within a cubic nonlinearity can give rise to a swirling flow component
in axially rotating pipes. Similar arguments will hold true for capturing the effects of
more general flow curvatures in turbulence.
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The quadratic expansion of the turbulent kinetic diffusion vector Dλ
(K)

(VDK) (5.17)
can only take the following structure if one respects its restriction of being a space-like
vector:

Dλ
(K)

=K3/2

7∑
i=1

Θ(i)b
λ
(i), (5.21)

with the expansion coefficients Θ(i) = Θ(i)(I(j )) again as functions of the full invariant
set (5.18) and the dimensionless expansion terms as

bλ
(1) =

K1/2

E hλσ∇σK,

bλ
(2) =

K3/2

E2
〈uα〉∇α〈P λ〉, bλ

(3) =
K1/2

E 〈u
α〉∇α〈uλ〉,

bλ
(4) =

K5/2

E3
hλρ∇ρK · ∇σ 〈P σ 〉, bλ

(5) =
K5/2

E3
hλρ∇σK · ∇ρ〈P σ 〉,

bλ
(6) =

K3/2

E2
hλρ∇σK · ∇ρ〈uσ 〉, bλ

(7) =
K3/2

E2
hρσ∇ρK · ∇σ 〈uλ〉.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.22)

The expansion structure of the high-ReT dissipation diffusion vector D̂λ
(E)

(
VD̂E

)
(5.17)

is of course up to dimensional considerations similar:

D̂λ
(E)

=K1/2E
7∑

i=1

Φ̂(i)ĉ
λ
(i), (5.23)

with Φ̂(i) = Φ̂(i)(I(j )) and

ĉλ(1) =
K3/2

E2
hλσ∇σE,

ĉλ(2) =
K3/2

E2
〈uα〉∇α〈P λ〉, ĉλ(3) =

K1/2

E 〈u
α〉∇α〈uλ〉,

ĉλ(4) =
K7/2

E4
hλρ∇ρE · ∇σ 〈P σ 〉, ĉλ(5) =

K7/2

E4
hλρ∇σE · ∇ρ〈P σ 〉,

ĉλ(6) =
K5/2

E3
hλρ∇σE · ∇ρ〈uσ 〉, ĉλ(7) =

K5/2

E3
hρσ∇ρE · ∇σ 〈uλ〉.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.24)

Again, in both expansions the restriction of being a space-like diffusion vector
excluded terms that are proportional to uncontracted mean 4-velocities 〈uα〉. However,
the mean 4-velocities enter here in a contracted form giving rise to a natural inclusion
of material time derivatives. Since these terms bλ

(3) = ĉλ(3) even represent the kinematic
left-hand sides of the mean averaged Navier–Stokes momentum equations (5.12), they
can explicitly account for turbulent memory effects during any process of turbulent
diffusion.

Expanding the first high-ReT dissipation production term P̂α
(1) β(Vτ ) (5.17) up to the

desired linear order, with its restrictions mentioned in § 5, will result in

P̂α
(1) β = E

6∑
i=1

Ξ̂(i)d̂
α
β(i), (5.25)
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with Ξ̂(i) = Ξ̂(i)(I(j )) and the spatial–dimensionless expansion terms as

d̂α
β(1) = hαλk

〈u〉
λβ ,

d̂α
β(2) =

K2

E2
∇β〈P α〉, d̂α

β(3) =
K2

E2
hαρk

〈u〉
σβ∇ρ〈P σ 〉, d̂α

β(4) =
K2

E2
hαρk

〈u〉
ρβ ∇σ 〈P σ 〉,

d̂α
β(5) =

K
E ∇β〈uα〉, d̂α

β(6) =
K
E hαρk

〈u〉
σβ∇ρ〈uσ 〉.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.26)

The zeroth-order term d̂α
β(1) as well as the linear term d̂α

β(4) will give no contributions
in the E-transport equation (5.12), due to the incompressibility constraint of the mean
velocity field. This holds in ‘all’ Newtonian reference frames, since if a tensorial object
vanishes in one reference frame it vanishes in all reference frames, the major feature
of the tensor concept. Furthermore, since the time-like component β = 0 gives no

contribution in the E-equation and since the two metrical tensors hαβ and k
〈u〉
αβ are

inverse tensors in every spatial subspace, the two terms d̂α
β(2) and d̂α

β(3) always turn
out to be equal due to the commutativity of the covariant derivative operator. Thus,
relative to the E-transport equation, the above linear expansion actually consists of
only three terms.

A linear expansion of the second high-ReT dissipation production term P̂αβ

(2) λ (Vτ )
(5.17) together with its corresponding restrictions leads to an empty expansion, an

expansion with no terms involved. A polynomial expansion of P̂αβ

(2) λ (Vτ ) will always

start off quadratically. The only possible linear term, proportional to hαβk
〈u〉
λσ 〈uσ 〉,

vanishes in all Newtonian reference frames, since k
〈u〉
λσ 〈uσ 〉 = 0 for all λ. That the

production term P̂αβ

(2) λ (Vτ ) really acts as a higher-order contribution can be seen when
using the direct simulation data of channel flows as a reference (Mansour, Kim &

Moin 1988). The term proportional to P̂αβ

(2) λ is negligible small when compared to all
other E-contributions in the regime of high ReT (Rodi & Mansour 1993). Certainly
the channel flow is no rigorous reference when investigating more complex flow
configurations. But nevertheless, at this level of development the four-dimensional

formulation generally demonstrates a higher-order behaviour for P̂αβ

(2) λ .

The last unclosed term to be modelled is the high-ReT dissipation scalar Ψ̂ (Vτ ).
Up to quadratic order this scalar is just a function of invariants (5.18) as is the case
for all previously given expansion coefficients,

Ψ̂ =
E2

K f̂ (Ij ), 1 � j � 12. (5.27)

Finally to close this section, it is worthwhile to note that since we have approached
the concept of turbulence modelling by modelling a nonlinear EVM in its most
systematic and general way, it is not surprising to see that the model proposed herein
will reduce to numerous standard EVMs when choosing the expansion coefficients
for the unclosed terms appropriately. For example the choice

Λ(2) = −Cμ, Λ(i) = 0, i �= 2,

Θ(1) =
Cμ

σk

, Θ(i) = 0, i �= 1, Φ̂(1) =
Cμ

σε

, Φ̂(i) = 0, i �= 1,

Ξ̂(5) = Ξ̂(6) = CμCε1, Ξ̂(i) = 0, i �= 5, 6, f̂ = Cε2,

⎫⎪⎪⎬
⎪⎪⎭ (5.28)
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with the constant numerical values

Cμ = 0.09, σk = 1.0, σε = 1.3, Cε1 = 1.44, Cε2 = 1.92, (5.29)

will reduce the invariant high-ReT model into the standard linear k–ε model of Jones
& Launder (1972) with the model coefficients suggested by Launder & Sharma (1974).
If we choose the expansion coefficients for the Reynolds-stress tensor for example as

Λ(2) = −Cμ, Λ(7) = −Λ(8) = C2, Λ(i) = 0, i �= 2, 7, 8, (5.30)

with Cμ =
1

6.5 + A∗s Ū
∗ , C2 =

√
1− 9C2

μS̄∗2

1 + 6S̄∗Ω̄∗
,

where 1
2

√
6 � A∗s �

√
6, Ū ∗ =

√
I11, S̄∗ =

√
1
2
(I11 +I12), Ω̄∗ =

√
1
2
(I11 −I12),

and the remaining coefficients for the K- and E-equation as before, we end up with
the Reynolds stress algebraic model of Shih et al. (1995) – in their full model the
quantity A∗s is determined dynamically by an algebraic equation containing a cubic
invariant, which of course cannot be presented anymore by the invariant high-ReT

model due to its quadratic nonlinearity.
More interesting, however, is to demonstrate whether this systematic four-

dimensional formulation is able to a priori rule out certain model constructions.
In other words, can this four-dimensional EVM possibly exclude already existing
EVMs or other models that have been successfully presented in the literature so
far? For that, one really has to recall the two obvious physical differences between
the true four-dimensional invariant EVM proposed herein and those EVMs which
have been presented so far: (i) the four-dimensional invariant model ‘systematically’
distinguishes between space-like and time-like closures, which, up to its degree in
nonlinearity, assures the correct treatment of curvature and memory effects in the
flow respectively, and (ii) with the independent aid of a Lie-group symmetry analysis
the mean pressure gradient is ‘systematically’ introduced as an own closure variable,
which, in the form of the mean pressure Hessian, shows the ability to model non-local
flow effects. Now, if these characteristic features are all set to zero, one certainly is
left with those standard EVMs as shown exemplary above. On the other hand, if
the mean pressure and/or any arbitrary time derivatives are introduced as closure
elements in a very ad hoc way for building an invariant turbulence model without
having the appropriate mathematical framework at hand, it is very unlikely that
such a model will be supported by a corresponding construction within the four-
dimensional formulation. For example, when only regarding the concept of time
derivatives, this is the case for the nonlinear K–l and K–ε models proposed by
Speziale (1987). Therein the Euclidean frame-indifferent Oldroyd time derivative has
been heuristically introduced as a closure variable for the Reynolds-stress tensor
within the usual (3+1)-dimensional geometrical setting. The result is that absolutely
no choice can be made for the expansion coefficients in the corresponding four-
dimensional invariant EVM such that it allows for a reduction to those quadratic
models developed in Speziale (1987). Hence these set of models are ‘not’ included
within the invariant four-dimensional formulation. This example finally demonstrates
the relevance and importance of using the appropriate mathematical framework when
aiming at modelling turbulent flows.

Thus, altogether, the herein-proposed four-dimensional invariant high-ReT model
can be seen as a promising extension of current nonlinear EVMs, not only to have
at the end a fully universal discussion on curvature effects but also to have a fully



Invariant turbulence modelling 57

universal discussion on non-stationary effects, in particular on memory effects within
any turbulent flow.

6. Discussion
The aim of this paper was not to offer a ready-to-simulate model but rather to

provide a new and especially a natural mathematical framework in which invariant
turbulence modelling could be performed. The advantages of a four-dimensional
modelling approach in all its facets was demonstrated at the example of constructing
a new nonlinear EVM within the k–ε family. The question of how far this model is
really quantitatively superior over existing nonlinear EVMs has to await further model
development.

Surely, the invariant high-ReT model as proposed in the previous section still
needs to be reduced by making use of physical modelling constraints like rapid
distortion theory, realizability and most importantly a Lie-group symmetry analysis
based on all invariant ‘solutions’, in particular on all scaling laws of the Navier–Stokes
equations given by the corresponding optimal system of subalgebras (Ovsiannikov
1982; Fushchych & Popowych 1994a ,b; Andreev et al. 1998), which will be subject
to future research. Finally it needs to be calibrated by means of experimental and
simulated data from basic flow configurations.

It should be clear that the model itself is not universally superior, since it is
based on various assumptions in the choice of the tensor dependency set V and its
subsequent polynomial expansion, but that the mathematical framework, the four-
dimensional formulation, is superior over the (3+1)-dimensional formulation, which
certainly is independent of any choice made on V. This should encourage the use of
this formulation also for modelling Reynolds-stress transport equations, or for closing
two-point correlation equations, or in subgrid-scale modelling of LES.

A true four-dimensional modelling approach, which automatically generates
additional restrictions which again do not exist in the usual (3+1)-dimensional
framework, guarantees a universal structure of the proposed models in ‘all’ Newtonian
reference frames, without exceptions. Hence, in a four-dimensional framework it is
not necessary to model separately the inertial case from the non-inertial case. A
certain model chosen will describe equally well or equally bad the non-inertial case
as it would describe the inertial counterpart, irrespective of if the inertial forces are
induced by time-dependent rotations or by the more complicated phenomenon of
curved surfaces.

A closure novelty, besides the four-dimensional aspects, was to include next to
the mean velocity gradient the mean pressure Hessian and the mean velocity field
itself. The idea for an improved local algebraic model with minimum mathematical
complexity was to make use of all internal flow information the averaged Navier–
Stokes equations could offer and not, except the two turbulent scales of length
and time, to pull in additional turbulent information from outside, as the algebraic
structure-based models of Reynolds & Kassinos (1995) do, which results in additional
equations for turbulence-structure parameters – the aim of these models is to sensitize
the Reynolds stresses to coherent structures in a turbulent flow but at the expense of
mathematical simplicity.

Including the mean pressure as a new internal modelling variable, we could
specifically show that the phenomenon of swirl in axially rotating turbulent pipe flows
can already be captured by a quadratic nonlinearity, and at the same time giving
a more advanced interpretation in that swirl also has, besides the mean velocity,
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its origin in the coupling of mean pressure and velocity gradients. Furthermore,
the pressure inclusion may generally also account for non-local effects in mean
deformations, a topic still not captured at all by current nonlinear EVMs.

A minor drawback when including the pressure is that numerics becomes slightly
more challenging. One has a strong coupled system between mean velocity and mean
pressure. The mean pressure can no longer be decoupled via the Poisson equation
anymore as it can be done for current turbulence models. It rather has to be treated,
next to the three mean velocity components, as an additional fourth flow component
within the numerical scheme used.

A further novelty was to apply the same closure strategy used for the Reynolds-
stress tensor also to all unclosed terms in the K- and E-equation. There we could
see how the velocity field in each equation gave rise to a natural dependence on a
material time derivative. Hence the modelled equations are able to explicitly account
for turbulent memory effects within any Newtonian reference frame.

In all, this paper reveals that modelling on a four-dimensional manifold leads to
qualitatively new and more profound modelling restrictions which the usual (3+1)-
dimensional framework is unable to provide. Regarding turbulence it offers a ‘unified’
invariant turbulence modelling approach.

The author would like to thank Martin Oberlack, Vladimir Grebenev and George
Khujadze for valuable discussions. Financial support for this project was granted by
the Deutsche Forschungsgemeinschaft (DFG OB96/16-1).

Appendix A. Compendium on tensor analysis
For the purpose of consistent notation and easy reference the most important

concepts and relations of tensor analysis are compiled. Further details and derivations
can be taken for example from the excellent book of Schrödinger (1985).

Differential geometry formulates a clear distinction between a manifold and a
coordinate system. A manifold of dimension N is to be seen as a set or a space of
points possible to embed coordinate systems which locally assign to every point of
the manifold a unique N -tuple of real values, the coordinates of the manifold. The
manifold itself is defined as essential and thus immutable, whereas the embedding
of a coordinate system into the manifold is not unique; it can be chosen freely by
transforming the coordinates accordingly – the choice of a coordinate system is a
matter of expediency, not of truth.

Without loss of generality let us focus on a four-dimensional continuous and
differentiable manifoldM whose points are distinguished from each other by assigning
four real values x0, x1, x2, x3 to each of them. However, this first labelling should have
no prerogative over any other one,

x̃0 = x̃0(x0, . . . , x3), x̃1 = x̃1(x0, . . . , x3),

x̃2 = x̃2(x0, . . . , x3), x̃3 = x̃3(x0, . . . , x3),

}
(A 1)

where x̃α are four continuous and differentiable functions of xα , such that their
functional determinant vanishes nowhere. This is necessary in order to secure a one-
to-one correspondence between the two sets of labels. But sometimes local exceptions
have to be made, for example the point of origin which in the transition from a
Cartesian to a polar coordinate system is to be excluded.

Now, tensor analysis aims at looking for mathematical entities, numbers or sets of
numbers to which a meaning can be attached to every point x in a given manifold
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M regarding arbitrary coordinate transformations: if we consider a coordinate
transformation as given in (A 1), a contravariant vector Aα is defined as a quantity
with four components which transform like the coordinate differentials dxα in (A 1),
which means

Ãα =
∂x̃α

∂xβ
Aβ. (A 2)

Thus the coordinate differentials themselves form a contravariant vector, but for the
finite coordinate differences �xα this is only the case if transformation (A 1) is linear
and for the coordinates xα themselves only if it is also homogeneous. A quantity Bα

is called a covariant vector if its components transform as

B̃α =
∂xβ

∂x̃α
Bβ. (A 3)

In general one cannot unambiguously associate a covariant and a contravariant
vector with each other; for this one needs more information on the inner structure of
the manifold. One can now define covariant, contravariant and mixed tensors of any
rank by similar expressions,

T̃ αβ...
μν... =

∂x̃α

∂xκ

∂x̃β

∂xλ
· · · ∂xρ

∂x̃μ

∂xσ

∂x̃ν
· · · T κλ...

ρσ ... , (A 4)

where a vector is a tensor of rank 1 and a scalar an invariant tensor of rank 0. Note
that if a coordinate transformation carries a special name like orthogonal, Lorentz,
Galilei or Euclidean, all tensors within such a transformation will adopt this name
in calling themselves orthogonal, Lorentz, Galilei or Euclidean tensors respectively.
Orthogonal tensors are also called isotropic tensors.

A tensor is thus solely defined by its transformation property in that it has to
transform linearly and homogeneously. This property guarantees that if a tensor is
zero in one coordinate system it is zero in all coordinate systems. Without loosing
the tensor character in (A 4) one can define an autonomous tensor algebra for each
point x in the manifold M, which means that referring only to a single point in the
manifold one can define addition and subtraction for tensors of the same rank and
multiplication and contraction for tensors of any rank.

When defining ordinary differentiation for tensors, however, the tensor character
of (A 4) in general will be lost: partial derivatives of tensors show no tensor
transformation behaviour, since they emerge from subtraction of tensors which do
not refer to a single point but which refer to different points of the manifold. That
ordinary differentiation in general breaks the tensor character can be easily seen for
example by differentiating the transformation rule (A 3) of a covariant vector,

∂B̃α

∂x̃μ
=

∂xβ

∂x̃α

∂xν

∂x̃μ

∂Bβ

∂xν
+

∂2xβ

∂x̃μ∂x̃α
Bβ, (A 5)

where the second inhomogeneous term, except for linear coordinate transformations,
prevents the derivative of a covariant vector to be a tensor of rank (0, 2).

Nevertheless, to define differentiation which maintains the tensor character of any
expression in (A 4) one has to either specify the inner structure of the manifold or
be in the possession of a contravariant vector field already defined in the manifold,
since during differentiation different points of the manifold need to be connected. The
former leads us to affinely and metrically connected manifolds, while the latter leads
us to the notion of the Lie derivative.
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Let V λ be a contravariant vector field in the manifoldM. The ‘Lie derivative’ of a
tensor T αβ...

μν... along the vector field V λ is a tensor of the same rank as T αβ...
μν... defined by

LV T αβ...
μν... := V λ∂λT

αβ...
μν... − T λβ...

μν... ∂λV
α − T αλ...

μν... ∂λV
β − · · ·+ T

αβ...

λν... ∂μV λ + T
αβ...

μλ... ∂νV
λ + · · · ,

(A 6)

with a negative term for each contravariant index and a positive term for each
covariant index. Preserving the rank of the tensor the Lie derivative LV satisfies all
rules of ordinary differentiation ∂ν as the product rule and linearity. Roughly speaking
one can say that the Lie derivative is the directional derivative of a tensor along a
curve set by a vector field adjusted for the change in the tangent: to differentiate the
tensor T αβ...

μν... at a point P one drags the tensor along the curve given by the vector

field V λ through P to a neighbouring point Q; the derivative then compares the
dragged tensor with the tensor evaluated at Q in the limit Q→ P .

A.1. Affine and metric spaces

To define an arbitrary differentiation in a manifold M which maintains tensor
character, one has to introduce an extra geometric structure on the manifold, an
‘affine connection’ Γ σ

κλ with the transformation law

Γ̃ ρ
μν =

∂x̃ρ

∂xσ

∂xκ

∂x̃μ

∂xλ

∂x̃ν
Γ σ

κλ +
∂x̃ρ

∂xσ

∂2xσ

∂x̃μ∂x̃ν
. (A 7)

Thus Γ σ
κλ does not transform as a tensor of rank (1, 2) except under linear coordinate

transformations: an affine connection which vanishes in one coordinate system, Γ σ
κλ =

0, does not necessarily vanish in any other coordinate system, Γ̃ ρ
μν �= 0. The affine

connection itself can be arbitrarily assigned in one coordinate system and determines
the meaning of parallel displacement in the space considered. Then one can define
covariant derivatives by

∇νT
κλ...
ρσ ... := ∂νT

κλ...
ρσ ... + Γ κ

ανT
αλ...
ρσ ... + Γ λ

ανT
κα...
ρσ ... + · · · − Γ α

ρνT
κλ...
ασ ... − Γ α

σνT
κλ...
ρα... − · · · , (A 8)

where the covariant derivative operator ∇ν satisfies all rules of ordinary differentiation
∂ν . If T κλ...

ρσ ... is a tensor of rank (r, s), then ∇νT
κλ...
ρσ ... is a tensor of (r, s + 1). In the

following we are only concerned with symmetric connections Γ σ
κλ = Γ σ

λκ , that is with
affine connected manifolds which are free of torsion.

If we form the second covariant derivatives by successive applications of (A 8), then
in general the differentiations with respect to different coordinates do not commute.
This property of the affine space is called curvature and is described by the Riemann
curvature tensor

Rκ
μλν = ∂λΓ

κ
μν − ∂νΓ

κ
μλ + Γ κ

ρλΓ
ρ
μν − Γ κ

ρνΓ
ρ

μλ. (A 9)

Since the Riemann curvature is a tensor it will be zero in all coordinate systems if it
is zero in one specified coordinate system.

Up to now we have not discussed how to measure length in a manifold. In an
affine space the concept of length can only be defined along a geodesic, but lengths
along different geodesics cannot be compared. (A curve in an affine space is called
a geodesic if its development is a straight line; in other words geodesics in affine
spaces are defined to be curves whose tangent vectors remain parallel if they are
transported along them.) Such a comparison becomes possible if the space admits a
symmetric tensor of rank 2 with vanishing covariant derivatives, the metric tensor
gμν – the assumption that the covariant derivative of the metric tensor should vanish
guarantees the natural demand that the length of vectors does not change under a
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parallel transport. Then the distance ds in a manifold is determined by

ds2 = gμν dxμ dxν, (A 10)

which by suitable parameterization agrees with the distance along geodesics.
If the determinant of the gμν vanishes, the metric is called singular; if it does

not vanish anywhere, the space is called metric or Riemannian. In such a space
the geodesics are constructed by a variation principle as the shortest as well as the
straightest lines. The assumption ∇ρgμν = 0 give rise to equations, which can be
solved for the affine connections,

Γ ρ
μν = 1

2
gρσ (∂μgνσ + ∂νgσμ − ∂σgμν), (A 11)

where the affine connections now carry the name of ‘Christoffel symbols’; the tensor
gμν is the inverse of gμν defined by

gμρg
ρν = δν

μ. (A 12)

With the help of these two tensors one now can uniquely associate with each
contravariant vector Aρ a covariant vector Aμ = gμρA

ρ , and conversely Aρ = gρμAμ.
Any symmetric tensor of rank 2 such as gμν which can be associated with a quadratic

form can be characterized by its signature, that is by the difference between the number
of positive and negative terms after the quadratic form has been diagonalized. This
number is an invariant by Sylvester’s law of inertia of quadratic forms.

Appendix B. The τ rϕ-component in axially rotating pipe flows
Following the reasoning of Speziale et al. (2000) the off-diagonal shear component

of the Reynolds-stress tensor τ rϕ is the source for generating a non-zero mean swirl
velocity 〈uϕ〉 in an axially rotating pipe. Their result, that it arises from a cubic
nonlinearity in conventional algebraic stress models through the constant presence of
the mean axial velocity, is extended herein with the insight that already a quadratic
nonlinearity will suffice to capture this secondary flow effect if only the Reynolds-
stress tensor is modelled as presented in (5.19). In this case not the mean axial velocity
〈uz〉, if the pipes symmetry axis is aligned with the z-axis, but the mean radial pressure
gradient ∂r〈p〉 will maintain the swirl.

To demonstrate it we identically proceed as in Speziale et al. (2000): we initially
focus on a fully developed turbulent non-rotating pipe flow on to which an axial
system rotation is then superposed. The fully developed non-rotating pipe flow is
a one-dimensional, one-component flow configuration, characterized by the radial-
dependent mean axial velocity profile 〈uz〉(r), which again is driven by a mean pressure
〈p〉(r, z) with a constant gradient in the axial direction ∂2

z 〈p〉 = 0. Now, if the axial
rotation is switched on, these are the only mean flow variables which can account
for a non-zero turbulent shear stress τ rϕ . To describe this flow it is reasonable to
change to the co-rotating frame. Relative to the standard reference frame (Cartesian
and inertial) the transformation to axial co-rotating cylindrical coordinates is simply
given as

x = r cos(ϕ + ω),

y = r sin(ϕ + ω),

z = z,

⎫⎪⎬
⎪⎭ ←−→Inverse

⎧⎪⎨
⎪⎩

r =
√

x2 + y2,

ϕ = arctan(y/x)− ω,

z = z,
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where ω = ω(t) is the time-dependent azimuthal angle induced by the axial rotation.
If we identify

x0 = t, x1 = x, x2 = y, x3 = z and x̃0 = t, x̃1 = r, x̃2 = ϕ, x̃3 = z (B 1)

and the mean 4-velocities 〈uα〉, 〈ũα〉 accordingly, the two space-like metrical tensors
(4.5), which transform as

h̃αβ =
∂x̃α

∂xρ

∂x̃β

∂xσ
hρσ , k̃

〈ũ〉
αβ =

∂xρ

∂x̃α

∂xσ

∂x̃β
k〈u〉ρσ , (B 2)

will attain the following spatial–diagonal structure in a co-rotating cylindrical frame:

h̃αβ =

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 1 0 0

0 0
1

r2
0

0 0 0 0

⎞
⎟⎟⎟⎟⎠ , k̃

〈ũ〉
αβ =

⎛
⎜⎜⎜⎝
‖〈ũ〉‖2 −〈ur〉 −r2〈uϕ〉 −〈uz〉
−〈ur〉 1 0 0

−r2〈uϕ〉 0 r2 0

−〈uz〉 0 0 1

⎞
⎟⎟⎟⎠ , (B 3)

with ‖〈ũ〉‖2 = k̃
〈ũ〉
ij 〈ũi〉〈ũj 〉 = 〈ur〉2 + r2〈uϕ〉2 + 〈uz〉2. Since the affine connection

Γ λ
αβ vanishes in the standard reference frame, the determination of its components

according to rule (A 7) for the above coordinate transformation simply reduces to

Γ̃ λ
αβ =

∂x̃λ

∂xσ

∂2xσ

∂x̃α∂x̃β
. (B 4)

Of its 40 components only 4 are non-zero:

Γ r
0ϕ = −rω̇, Γ

ϕ
0r =

ω̇

r
, Γ r

ϕϕ = −r, Γ ϕ
rϕ =

1

r
. (B 5)

Now, the transformed Reynolds-stress tensor τ̃ αβ of the high-ReT turbulence model
proposed in § 5.1 has, by construction, the same form as in (5.19) and (5.20). When
determining the relevant transformed shear component τ rϕ it shows that only the
expansion term proportional to a

rϕ
(5) gives a contribution, which we now want to write

out explicitly, having in mind that the covariant derivative of a scalar quantity, as
the mean pressure, is just its partial derivative ∇α〈p〉 = ∂α〈p〉, that h̃αβ is diagonal
and that we consider a fully developed flow situation before rotation is switched on,
which means 〈ur〉 = 〈uϕ〉 = 0, ∂ϕ〈uz〉 = ∂z〈uz〉 = 0 and ∂ϕ〈p〉 = 0, ∂2

z 〈p〉 = 0:

τ rϕ ∼ a
rϕ
(5) ∼ (h̃rρh̃ϕσ + h̃ϕρh̃rσ )∇̃ρ∇̃λ〈p̃〉 · ∇̃σ 〈ũλ〉

= hrrhϕϕ∇r ∇̃λ〈p〉 · ∇ϕ〈ũλ〉+ hrrhϕϕ∇ϕ∇̃λ〈p〉 · ∇r〈ũλ〉

= 1
r2∇r (∂̃λ〈p〉) · ∇ϕ〈ũλ〉+ 1

r2∇ϕ(∂̃λ〈p〉) · ∇r〈ũλ〉

= 1
r2

[
∂r ∂̃λ〈p〉 − (∂̃ρ〈p〉)Γ̃ ρ

rλ

]
·
[
∂ϕ〈ũλ〉+ 〈ũσ 〉Γ̃ λ

ϕσ

]
+ 1

r2

[
∂ϕ∂̃λ〈p〉 − (∂̃ρ〈p〉)Γ̃ ρ

ϕλ

]
·
[
∂r〈ũλ〉+ 〈ũσ 〉Γ̃ λ

rσ

]
= 1

r2 ∂
2
r 〈p〉 · 〈ũσ 〉Γ̃ r

ϕσ − 1
r2 (∂r〈p〉)Γ̃ r

ϕλ ·
[
∂r〈ũλ〉+ 〈ũσ 〉Γ̃ λ

rσ

]
= − ω̇

r
∂2

r 〈p〉+ ω̇
r2 ∂r〈p〉.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B 6)

Thus a mean swirl velocity 〈uϕ〉 will be generated in an axially rotating pipe and
persists in a fully developed flow, since the radial pressure gradient ∂r〈p〉 gives rise
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to a non-zero Reynolds shear stress τ rϕ , independent of the swirl velocity. If the
rotation ceases, ω̇ = 0, the mean swirl velocity will decay, ending in a fully developed
non-rotating pipe flow, which exhibits only a mean axial velocity component 〈uz〉.
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